INNOVATIVE BATTERY TESTING SOLUTION PROVIDER

PRODUCT **CATALOGUE**

Initial Energy Science&Technology(Xiamen) Co., Ltd

Tel: (86)592-5367060 Fax: (86)592-5367062 Mail: info@iesttech.com

Web: www.iestbattery.com

Add: 4F No.2 BLDG, Xinfeng 2nd Road, Huli District, Xiamen, China

(IEST **3** Major Business)

- Battery R&D Solutions
- ♦ Battery Testing Service

• Battery Testing Instruments

www.iestbattery.com

Initial Energy Science&Technology(Xiamen) Co., Ltd

INTRODUCTION **>**

Founded in 2018, Initial Energy Science & Technology Co., Ltd(IEST) is a comprehensive provider of advanced testing instruments for batteries(LIBs, SIBs, and SSBs).

IEST is committed to delivering top-tier testing instruments with following testing scope:

- Anode & Cathode Powders: Resistivity & Compaction Density;
- **Seperators/Electrolyte**: Tortuosity / McMullin Number / Ionic Conductivity;
- Anode & Cathode Electrodes: Resistance, Uniformity;
- Cells: In-situ Gassing & Swelling of coin cells, pouch cells, stacked cells, prismatic cells, cylindrical cells;
- Modules: Cyclers, CV & EIS testing.

IEST places significant emphasis on the R&D of cutting-edge technologies, and our mission is to enhance our customers' product quality, so as to contribute to the advancement of new energy technologies, and we have supplied over 2,500 instruments to more than 700 clients worldwide.

CATALOGUE

Material Characterization

Single Particle Force Properties Test System Powder Resistivity & Compaction Density Mea Solid Electrolyte Measurement System Battery Slurry Resistance Analyzer Battery Electrode Resistance Analyzer

In-situ Gassing of Cells

In-Situ Gassing Volume Analyzer In-situ Multi-channel Storage Gassing Test Syst Square & Cylinder Cell Internal Pressure Testir

In-situ Swelling of Cells

Model Coin-cell Swelling Analyzer In-Situ Rapid Swelling Screening For Silicon-Ba In-situ Swelling Analyzer for Consumer Cells In-situ Swelling Analyzer for Power and Energy Battery Pressure Distribution Film Cylindrical Cell Swelling Volume Analyzer

Electrochemical Characterization

Electrochemical Property Analyzer Battery Impedance Tester

	01
surement System	07
	11
	13
	15

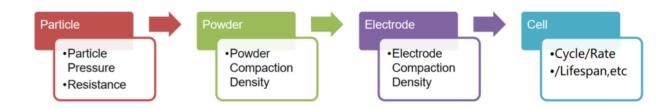
9
5
6

	27
ased Anode	27
	27
y Storage Cells	27
	36

39
43

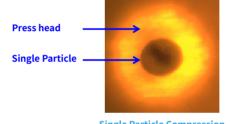
Single Particle Force Properties Test System

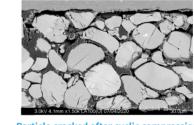
Scan QR code for details


Model Table Α

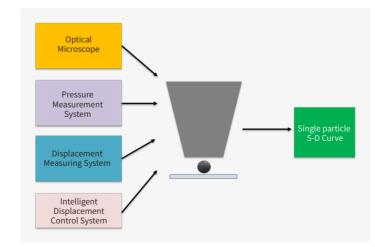
Item	Single Particle Force Tester			
Model	SPFT1000	SPFT2000		
Applicable Samples	Particle size: 5-50µm(anode & cathode particles, solid electrolyte particles)			
Test Parameters	Force, Displa	acement		
Test R ange	Displacement Range: 0-75μm Force Range: 0-100mN			
Test Accuracy	Microscope magnification: up to 1200 times Force Accuracy: ±0.1 mN Min. Displacement unit: 10nm Data Collection Frequency: 1000Hz			
Other Features	Stress-strain Curve Particle Image Observation Automatic Pressure Controll Fully Automatic Software			
Automatic XY-axis control	X √			

Note: IEST prioritizes continuous product updates, and our specifications are subject to change without prior notice.


Product Introduction В


Background: Crushing strength of particles can be used to evaluate the pressure resistance of the material and guide the rolling process. Materials with higher particle mechanical strength will have better subsequent cycle stability.

Applicable Samples


- 1. Cathode: NMC/LCO/LRMs
- 2. Anode : Silicon-based materials, Hard Carbon, etc.
- 3. Solid Electrolytes

Single Particle Compression (Bottom View)

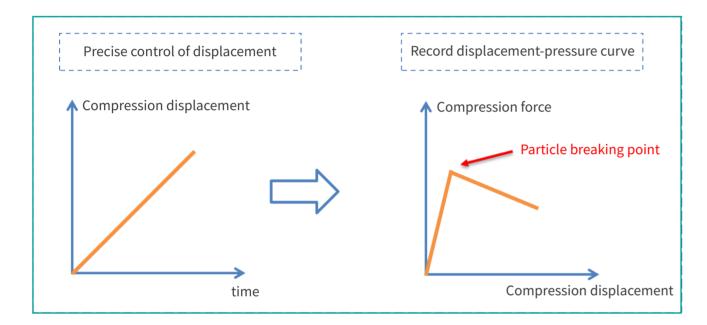
Equipment Schematic

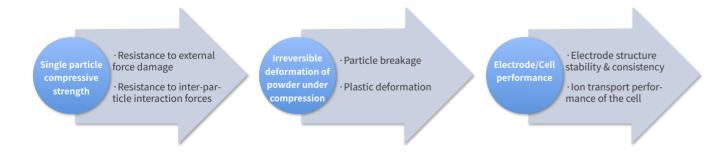
Particle cracked after cyclic compression (SEM Image)

Basic Functions

Apply compression to the particle to generate a force-displacement curve, from which the particle's failure point can be identified. This process determines the force at which the particle is crushed or fails.

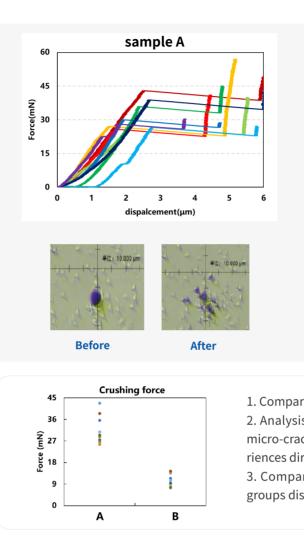
Functional Modules


Displacement, pressure, software integrated control; Real-time photography and video recording of particles.

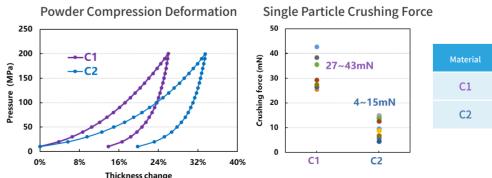

c Main Test Steps

Sample Preparation: Disperse the powder evenly into the anhydrous ethanol solution, and then add it dropwise to the glass slide;

- **Particle Location**: Locate the single particle with the optical microscope;
- Particle Compression: Compress the particle at a constant speed;
- **Data Collection**: Collect the force-displacement curves during the compression so as to find the failure point.



Particle Compression Property and Powder Compaction

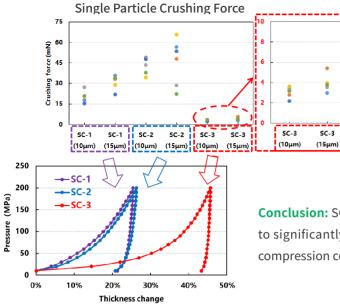


D Application Cases


1. Application on Anode Materials — SiC

2. Application on Anode Materials — Pure Carbon

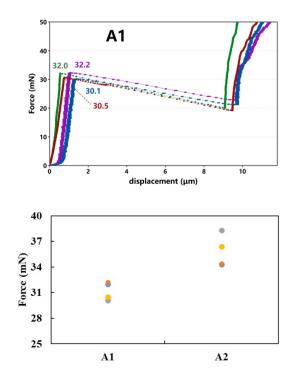
Conclusion: The compressive property of particle C1 is stronger. Hence, C1 powder shows a higher compression modulus than that of C2.

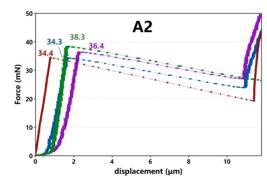


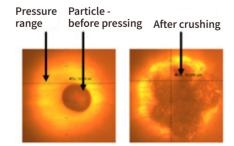
- 1. Comparison of crushing force distribution: A>B.
- 2. Analysis of stress-displacement curves: Sample A exhibits initial micro-cracking followed by complete collapse, while sample B experiences direct structural collapse and fragmentation.
- 3. Comparison of Disintegration States: After fracturing, all three groups disintegrate into fine granular states.

~43mN	Material	Irreversible Deformation Parameter	Maximum Deformation Value
	C1	13.8%	26.0%
4~15mN	C2	19.8%	33.5%

3. Application on Anode Materials — SiC Composites

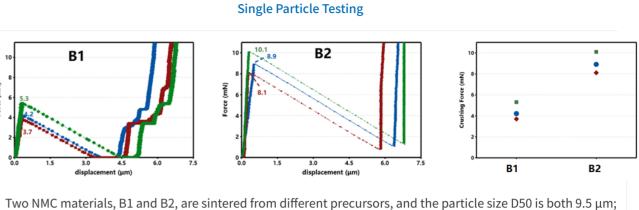


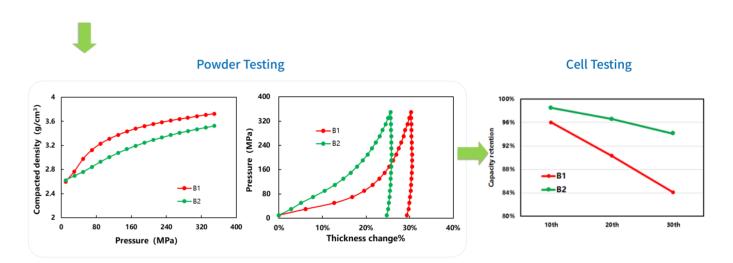

Material	Irreversible Deformation Parameter	Maximum Deformation Value
SC-1	21.3%	25.4%
SC-2	20.8%	26.3%
SC-3	43.3%	45.7%


Conclusion: SC-3 particles exhibit weaker compressive strength, leading to significantly greater maximum and irreversible deformation during compression compared to the other two samples.

Powder Deformation

1. Application on Cathode Materials—NCM811





The two NMC materials A1 and A2 are sintered from the same precursor, but the sintering process is different. The particle size D50 is 18 µm.

Conclusion: The compression resistance of A2 is superior to that of A1, and modifying the sintering process can enhance the material's hardness to a certain extent. Single-particle mechanical property characterization methods offer valuable insights for optimizing the sintering process of materials.

2. Application on Cathode Materials—NCM811

After assembling into half-cells following the same procedure, cycling at 3.0~4.3V, 0.5C, and 45 °C, sample B2 exhibits better cycling stability.

Conclusion: The crushing processes of the two types of particles differ, leading to variations in powder compaction density and charging cycle performance.

05 | SPFT

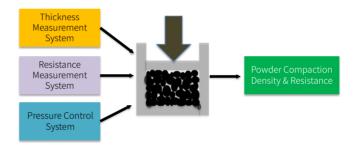
Powder Resistivity& Compaction Density Measurement System

Scan QR code for details

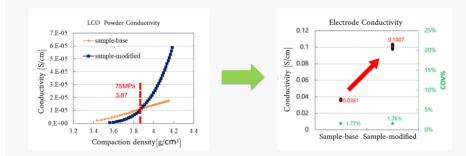
Model Table

Model	PRCD1000	PRCD2000	PRCD3000	PRCD1100	PRCD2100	PRCD3100
Stress & Pressure	Stress	up to 1T& Pressure 70	MPa		Stress up to 5T & Pressure 350	MPa
Test Principle	2-probe	4-probe	2-probe & 4-probe	2-probe	4-probe	2-probe & 4-probe
Applicable Samples	Cathode Samples	Anode Samples	Anode & Cathode Samples	Cathode Samples	Anode Samples	Anode & Cathode Samples
Resistance Range		1 μΩ~20 ΜΩ		1μΩ~1200ΜΩ	1μΩ~20	00ΜΩ
Sensor Resolution & Accuracy	Thickness Sensor: Resolution 0.5 μ m, Accuracy \pm 10 μ m Stress Sensor: Resolution 0.1 KG, Accuracy \pm 0.3% F.S. Resistance Sensor: Resolution 0.1 μ Ω, Accuracy \pm 0.1%F.S.					
Test Parameters	Thickness, Compaction Density Resistance, Resistivity, Conductivity Stress, Pressure Temperature & Humidity					
Other Specifications	1.Mold/Jig Diameter: 10 mm / 13 mm / 16 mm 1.Mold/Jig Diameter: 10 mm / 13 mm / 16 mm 2. L*W*H: 320*400*800 (mm) 2. L*W*H: 370*575*1140(mm) 3. Instrument Power: 450W 3. Instrument Power: 2100W 4. Instrument Net Weight: 85KG 4. Instrument Net Weight: 250KG					
Test Modes & Functions	Multi-pressure Test Mode: Suitable for testing of Compaction Density & Resistance without fixed steppings Variable Pressure Test Mode: Suitable for testing of Compaction Density & Resistance with fixed steppings Pressure Relief Test Mode: Suitable for testing of Rebounced Thickness Curve Steady-state Test Mode: Suitable for testing of Stress-Strain Curve & Elastic Modulus					

Note: IEST prioritizes continuous product updates, and our specifications are subject to change without prior notice.

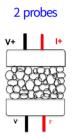

Instrument Principle В

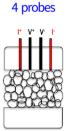
Test methods: Put a certain amount of powder $(1 \sim 2g)$ into the mold and vibrate it, put the mold into the instrument box, set the pressure (≤ 200 MPa) and the holding time, and start testing the thickness and resistance changes of the powder during the compression process.


Test parameters: Stress, pressure, thickness, resistance, resistivity, conductivity & compaction density.

Calculation formula

Compaction Density(g/cm³): $D = \frac{m}{S*L}$ Resistance(Ohm): $R = \rho \frac{l}{s}$ Conductivity (S/m): $\sigma_e = \frac{1}{\rho} = \frac{l}{RS}$ Resistivity(Ω^* cm)-PRCD2100: $\rho = k \frac{u}{r}$ (Where k is the compensation coefficient)

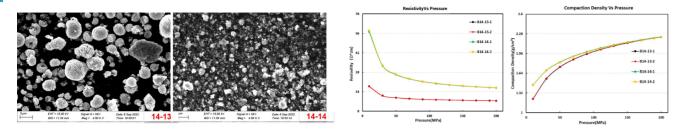

Why Compaction Density instead of Tapped Density? С



Result analysis:

Result Analysis: Using LCO powder as an example, when the compaction density of the modified powder sample is less than 3.87g/cm³ (pressure <75MPa), its conductivity is lower than that of the unmodified powder sample. However, when the compaction density exceeds 3.87g/cm³ (pressure >75MPa), the conductivity of the modified powder begins to surpass that of the unmodified powder, and the conductivity improves significantly as the compaction increases.

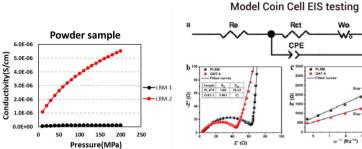
Conclusion: When testing the conductivity of powder, the compaction density should be close to the actual compaction of the powder in the electrode.

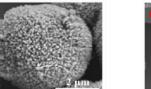

LCO Powders

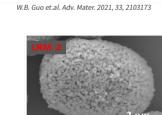
The compaction density of the LCO electrodes is around 3.8-4.0g/cm³ after calender.

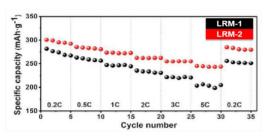
PRCD | 08

Application Cases

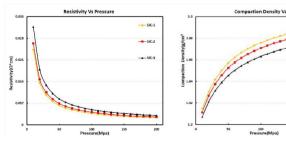

Cathode material-LMFP




Conclusion 1: The conductivity of B14-13 is superior to that of B14-14. This is primarily due to its lower porosity, which enhances particle contact throughout the compression process, resulting in better conductivity.


Conclusion 2: The compaction density shows minimal difference under high-pressure conditions but varies under low-pressure conditions. This is mainly because samples with a wide particle size distribution have poor flow and rearrangement characteristics, leading to higher porosity and lower compaction density under low pressure.

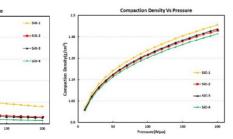
Lithium-rich materials



Model Coin Cell Cycle testing

Analysis of the lithium-rich material with different modification methods.

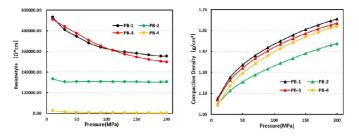
The resistivity of the lithium-rich material can be reduced effectively by adjusting its surface structure.



Test Condition: Si content: 3%, 6% and 10% (SiC-1/ SiC-2/SiC-3)

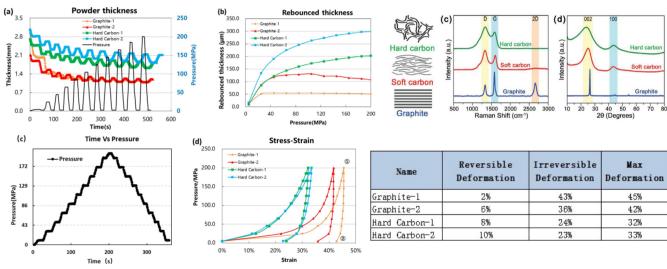
Conclusion

Resistivity: SiC-1 < SiC-2 < SiC-3 Compaction density: SiC-1> SiC-2> SiC-3



Test Condition: Sintering temperature of SiO Materials: SiO-1< SiO-2<SiO-3<SiO-4

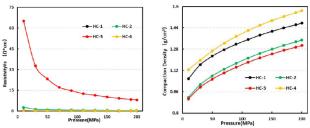
Conclusion


Resistivity: SiC-1> SiO-2> SiO-3> SiO-4 Compaction density: SiC-1> SiO-2> SiO-3> SiO-4

(4) Anode & cathode materials for sodium ion battery

Conductivity evaluation of anode & cathode powders for sodium ion batteries : Effectively evaluate the conductivity and compaction properties of Prussian blue and hard carbon under different modification conditions.

(5) Compression properties of carbon materials



Conclusion: the conductivity of graphite is greater than that of hard carbon, so is its powder compressibility.

Testing Mold E

09 | PRCD

Name	Reversible Deformation	Irreversible Deformation	Max Deformation
Graphite-1	2%	43%	45%
Graphite-2	6%	36%	42%
Hard Carbon-1	8%	24%	32%
Hard Carbon-2	10%	23%	3.3%

Mold Parameters		
Mold Material Stainless Steel, Ceramic, PE		
Diameter	10mm/13mm/16mm	
Test Pressure	Up to 550MPa	
Service Life	12000 Times	

Note: IEST prioritizes continuous product updates, and our specifications are subject to change without prior notice.

Solid Electrolyte Measurement System

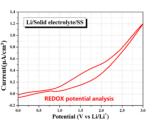
Scan QR code for details

A Creative Solutions

This instrument is suitable for testing of various types of solid electrolytes, such as oxides, sulfides and polymers.

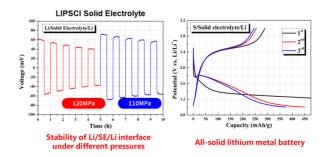
B Application Cases

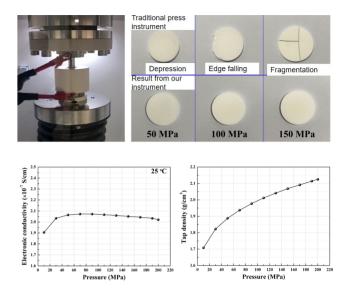
(1) Formation of green pellet


The equipment can be used to prepare the green pellet for solid-state batteries.

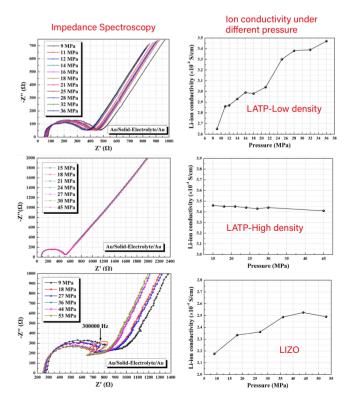
(2) Electronic conductivity & compaction density

The electronic conductivity of the solid electrolyte under varying pressures can be measured using an external electrochemical impedance spectroscopy (EIS) module.


(3) Electrochemical stabilization window


Using the cyclic voltammetry (CV) module, the electrochemical stability window of solid electrolytes can be analyzed under different pressure conditions.

(4) Solid-state battery cycling performance


The charge-discharge (CD) module allows for the analysis of the cycling performance of solid lithium metal batteries under varying pressures and different electrochemical parameters.

(5) Ionic conductivity

Testing range: 10MHz~0.1Hz Voltage disturbance: 10mV The electrochemical impedance spectroscopy (EIS) module automatically measures the ionic conductivity of solid electrolytes under varying pressures.

SEMS | 12

Battery Slurry Resistance Analyzer

Scan OR code for details

Resistivity (Ω^* cm): $\rho_e = \frac{U}{I} \times \frac{S}{I}$

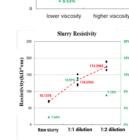
Slurry Resistivity Test Principle Α

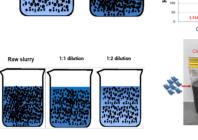
Test Methods: Put a certain volume of slurry (~80mL) into the measuring glass, insert a clean electrode pen, start the software, start to test the change of the slurry resistivity at the three pairs of electrodes with time and save it to the file.

Main features:

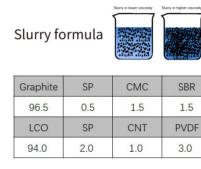
1. Separate the voltage and current lines, eliminate the influence of inductance on voltage measurement, and improve the accuracy of resistivity detection; 2. The disc electrode with a diameter of 10mm ensures a relatively large contact area with the sample and reduces the test error;

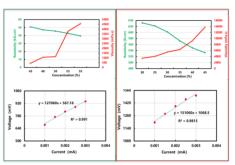
3. It can monitor the change of resistivity with time at three positions in the vertical direction of the slurry in real time;

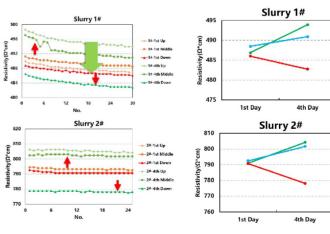

Specifications

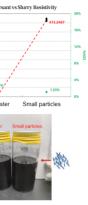

Product model	BSR2300		
Resistivity range	2.5Ω*cm~50MΩ*cm		L 50/ /0.010 t
Conductivity range	0.02µS/cm~400mS/cm	Resistivity accuracy/resolution	±5%/0.01Ω*cm
Temperature range	0~40°C Temperature accuracy/resolution ±0.5°C/		±0.5°C/0.1°C
Number of test electrodes	three pairs		

Note: IEST prioritizes continuous product updates, and our specifications are subject to change without prior notice.


Application Cases


Evaluation of conductive agent slurry with different formulations (1) Slurry in higher viscosit


Concentration-viscosity-resistivity correlation (2)

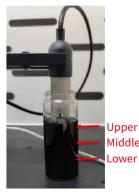

LCO Slurry

Slurry settling performance (3)

On the first and fourth day of testing, the resistivity of the upper and middle channels increased, while the resistivity of the lower channel decreased, indicating that after four days of shelving, the slurry shows obvious settlement.

Subsequently, a shelving period can be formulated for a certain of slurry according to the change of the resistivity to ensure the uniformity of the slurry!


When the viscosity, concentration and dispersant type of the conductive agent are changed, the resistivity also changes!


In the future, specifications can be formulated for the slurry resistivity of a certain fixed viscosity, and the stability of the slurry process can be monitored!

Graphite Slurry

The resistivity of the slurry decreases with the increase of the concentration. and the change of the viscosity is also inversely proportional to the relationship;

The I-V curve test of these two types of slurries basically conforms to Ohm's law, and the current and voltage have a linear relationship. indicating that the slurries are mainly electronic conductors;

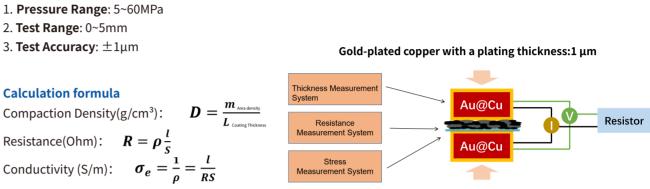
BSR | 14

Battery Electrode Resistance Analyzer

Scan OR code for details

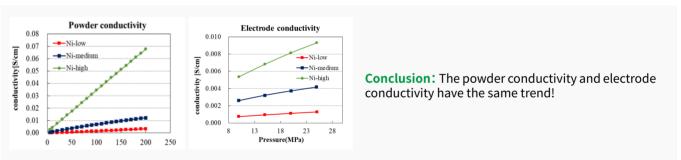
IEST 元能科技 BER2500

Model Table

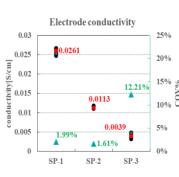

Model	BER2300	BER2500	
Pressure method	Servo motor		
Resistance range & accuracy	1μΩ~3.1kΩ(±0.5%F.S)		
Pressure range & accuracy	up to 1000kg——5~60Mpa(±0.3% F.S)		
Thickness range	/	0~5mm	
Thickness resolution & accuracy	/	0.1µm/±1µm	
Testable parameters	Resistance, resistivity, conductivity, pressure, temperature and humidity	Resistance, resistivity, conductivity, pressure, temperature and humidity, thickness, compaction density	
Features	Single point test mode; Continuous test mode; Variable pressure mode		

Note: IEST prioritizes continuous product updates, and our specifications are subject to change without prior notice.

Testing method and principle В


Test parameters: The battery electrode resistance analyzer (BER series) adopts the double-plane pressure-controllable **disk electrode** to directly measure the overall resistivity of the real electrode, that is, the sum of the coating resistance, the contact resistance between the coating layer and current collector and the current collector resistance.

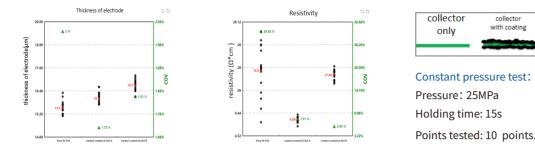
Feature



Appliction Case - Material Evaluation С

(1) Material evaluation : correlation between powder conductivity and **Electrode conductivity**

Conductivity evaluation of conductive agents (2)

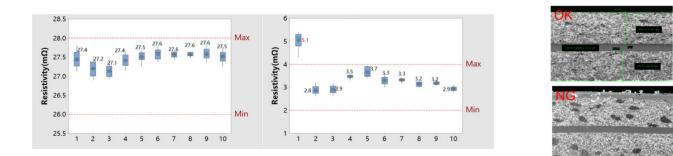

Constant pressure test Pressure: 25MPa Holding time: 25s Points tested: 15points.

* Coefficient of Variation COV = (Standard Deviation SD / Mean) \times 100%

Conclusion: Electrode conductivity characterization can be used to evaluate the conductivity and dispersion performance of conductive agents!

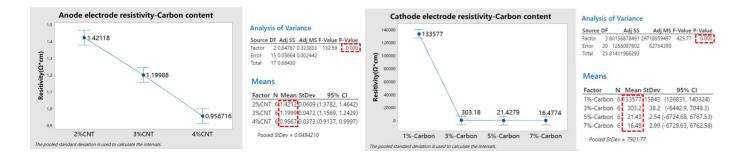
BER | 16

Evaluation of primer coated aluminum foil: pure aluminum foil, carbon (3) coated aluminum foil A, carbon coated aluminum foil B

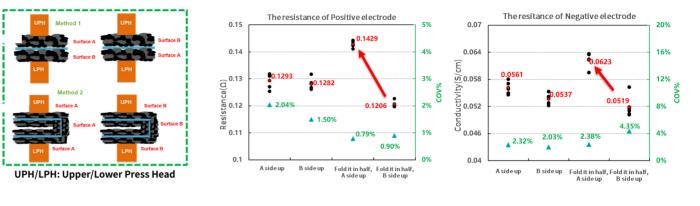


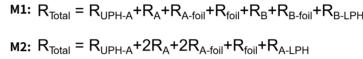
Conclusion

- 1. Different primer coating processes will change the conductivity of the current collector;
- 2. After coating 1~2µm primer material on the aluminum foil, the conductivity uniformity of the current collector is better;


Application Case - Process Evaluation D

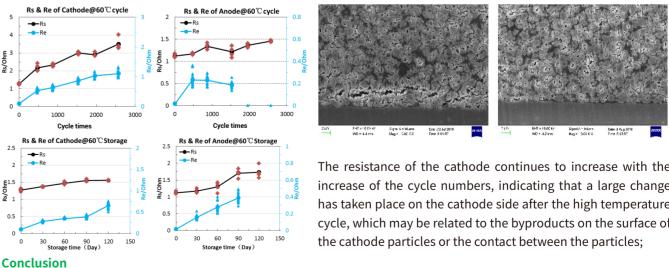
Uniformity evaluation for the distribution of conductive agent


Conclusion: The quality of the first batch of the 10 anode electrodes is not acceptable as its resistivity is outside the normal range.


Positive and negative electrodes with different conductive agents

Conclusion: The resistivity of the NCM electrodes decreases with the increase of Carbon content, and when the content is greater than 5%, the resistivity decreases slightly.

(3) Separate the resistivity of the A and B coating layers for the double-coating electrode



Conclusion

1. When the A side or the B side is facing up alone, the difference in the resistance and uniformity of the electrode sheet is small; 2. The difference between the A side and the B side after folding is mainly due to the difference in the coating on the two sides, so this method can be used to judge the difference in the coating on the AB side;

Application Case - Failure Analysis

Analysis of electrode resistance during high temperature cycle&storage (1)

The resistance of the cathode continues to increase with the increase of the cycle numbers, indicating that a large change has taken place on the cathode side after the high temperature cycle, which may be related to the byproducts on the surface of

- 1. The resistance of cathode electrodes increases with the number of cycles.
- 2. The resistance of anode electrodes increases with the storage time.

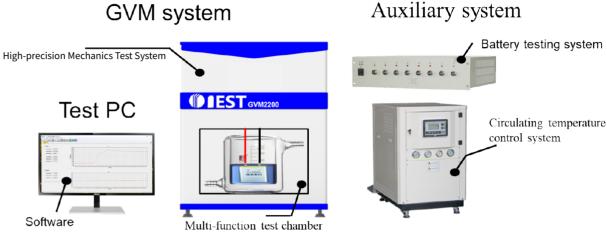
17 | BER

Constant pressure test Pressure: 25MPa Holding time: 15s Points tested: 5 points for each group.

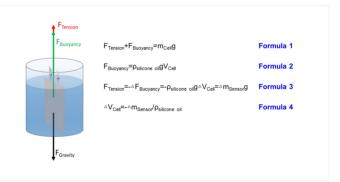
In-Situ Gassing Volume Analyzer

Scan OR code for details

Model Table


Model	GVM2100	GVM2200	GVM2150
Channel	Single Channel (1 Cell)	Dual Channel (2 Cells)	Single Channel (1 Cell)
Maximum Cell Weight (Including Fixture)	1000g	1000g	5000g
Test Temperature	RT~85°C	RT~85°C	RT~85°C
Volume Change Resolution	1µl	1µl	10µl
Volume Change Measurement Precision	±10µl	±10µl	±30μl
System Stability	≪20uL(RT,≪60min) ≪50uL(RT,60min~12h)	≤20uL(RT, ≤30min) ≤50uL(RT, 30min~12h)	≪30uL(RT, ≪30min) ≪50uL(RT, 30min~12h)
Instrument Dimensions	540*540*910mm	540*540*910mm	540*540*910mm
Instrument Weight	70kg	75kg	70kg

Maximum Dimensions (Excluding Tabs): 220 × 180 mm (Custom sizes available upon request)


Note: IEST prioritizes continuous product updates, and our specifications are subject to change without prior notice.

Creative solution - in-situ gassing monitor В

GVM system

Instrument Principles

Product Features D

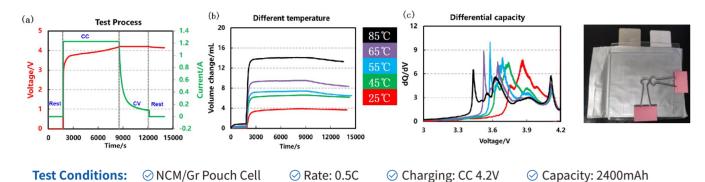
- Cylindrical & Prismatic Cell Gassing
- **Multi-Channel Gassing Testing:** Single Channel \rightarrow 2-Channel \rightarrow 8-Channels Testing
- Multiple Temperature Settings: Room Temperature Testing → High and Low Temperature Testing (RT to 85°C with Water Bath Control)
- **Comprehensive Gassing Analysis** : Gassing Volume → Gassing Pressure → Gassing Composition Analysis

Applications

> Overcharge Gassing **Cycle** Gassing

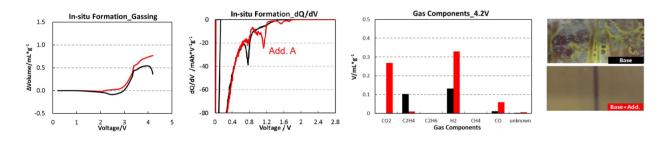
By combining Newton's law (formula 1) and Archimedes' buoyancy principle (formula 2), specialized sensors are used to measure the real-time mass changes of the cell during the charge & discharge process, and then the cell's volume changes can be further calculated (formula 3 and 4).

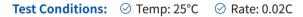
Multi-Level Gassing Testing: Material Gassing \rightarrow Single-Layer Stacked Cell Gassing \rightarrow Small Pouch Cell Gassing \rightarrow


Storage Gassing

Formation Gassing

Application Case - Formation Gassing

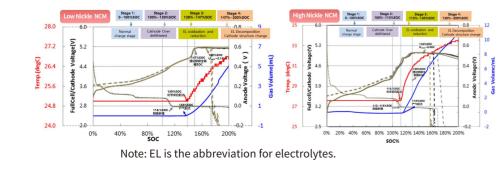

(1) Formation at different temperatures



Conclusion: The gas production increases gradually with the increases of formation temperature, and when formation temperature is around 55°C, the first phase transition reaction peak will be more acute.

In addition, from the differential capacity curve, as the formation temperature increases, the polarization decreases.

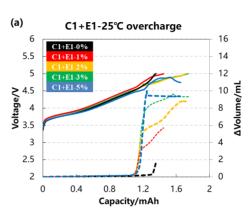
(2) Formation with different electrolyte additives

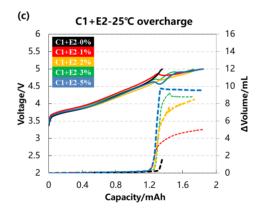


Conclusion: The gas production & gas production rate of the cells with additive A(red) are greater than those without the additive, which means this additive enables a more complete **SEI formation** in the cells.

F Application Case - Overcharge Gassing

(1) NCM cells with different Ni contents

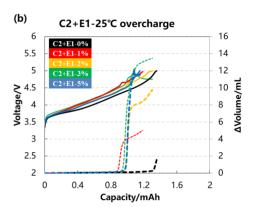

Test Conditions

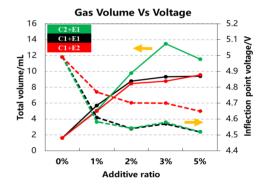

⊘ Temperature: 25°C⊘ Rate: 0.5C

Conclusion

The slope of the volume change curve suddenly increases when overcharged to a certain potential, then the surface temperature of the cell increases sharply, and gas generation starts instantly from there;
 As the nickel content increases, the state of charge (SOC) at the onset of gas generation shifts from 138% to 115%.

(2) Cells with different cathodes and contents of electrolyte additives

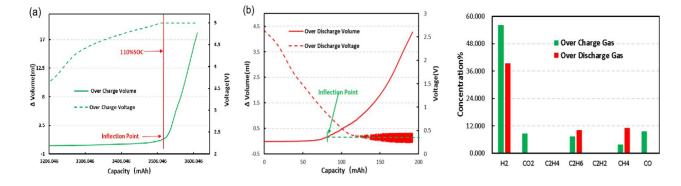



Note: C: Cathode electrodes

Additives	Gassing volume after overcharge to 5V(mL)			Voltage in gassing curve inflection point		
contents	C1+E1	C2+E1	C1+E2	C1+E1	C2+E1	C1+E2
0%	1.625	1.625	1.625	4.99	4.99	4.99
1%	5.708	5.068	5.005	4.61	4.583	4.77
2%	8.786	9.783	8.457	4.54	4.543	4.70
3%	9.335	13.479	8.785	4.57	4.58	4.70
5%	9.391	11.522	9.549	4.52	4.52	4.65

Conclusion: Both cathode electrodes and the contents of electrolyte additives affect gas production, while the type of additives mainly affects the potential of gas production.

21 | GVM

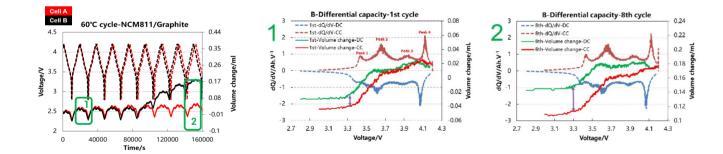


E: Electrolyte additives

GVM | 22

Overcharge and overdischarge of LFP batteries (3)

Test Conditions: ⊘ LFP/Graphite Cells ⊘ 0.5C CCCV to 5V ⊘ 0.5C DC to 0V

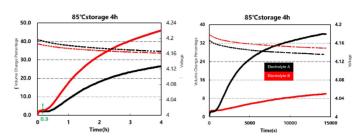

Conclusion

1. As the cell is overcharged or overdischarged, the starting point of gas production can be detected in real time;

2. Gas chromatography analyzes the gas composition under these two working conditions. In addition to the same gas type as the over-discharge cell, a relatively high content of CO and CO2 gas is also detected.

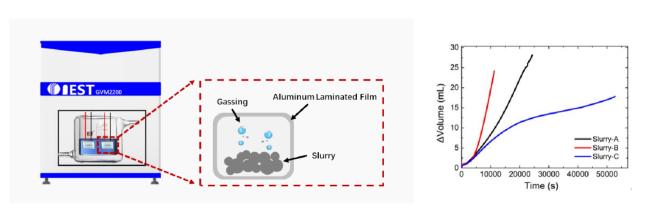
Application Case - Cycling Gassing

Cycle performance of different NCM cells (1)



Test Conditions: ⊘ NCM/Gr Pouch Cell ⊘ Temperature: 60°CRate: 0.5C ⊘ Voltage: 3-4.2V

Conclusion: The volume change of cell B is greater than that of cell A, and the gap of volume change deepens with the increase of cycles, which indicates the irreversible volume swelling increases as well.


Application Case - Storage Gassing

Storage performance under 3 different conditions (1)

Test Conditions: ⊘ 4.2V fullly charged ⊘ storage at 85°C for 4h **Conclusion:** Different cathode materials, electrolytes, and storage temperatures all affect the volume change of the cells.

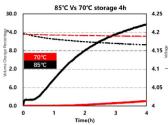
Gassing from silicon-based slurries E

Conclusion

1. Pre-magnesium or pre-lithiation treatment of silicon monoxide results in gas generation in the slurry. 2. Lithium compensation additives in the cathode tend to decompose and generate gas during the actual slurry and lithium compensation process.

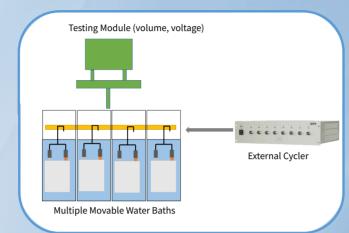
Comprehensive gassing solutions E

Multi-Channel

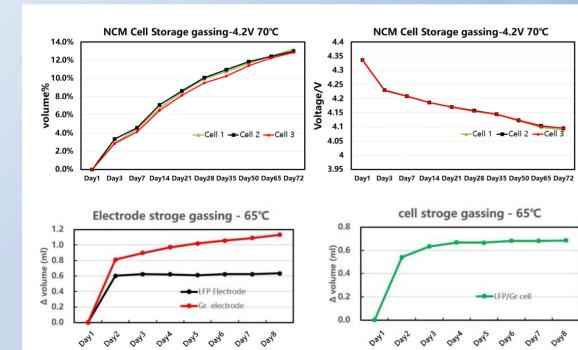

Gassing Testing

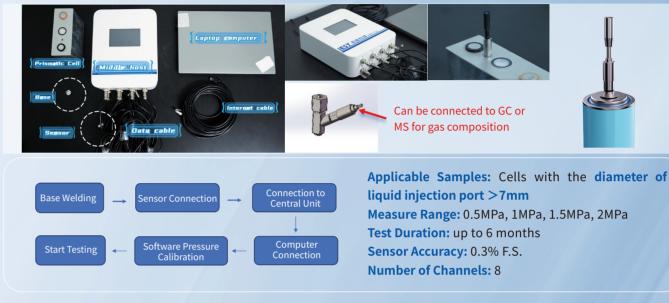
Stacked Cell Molds

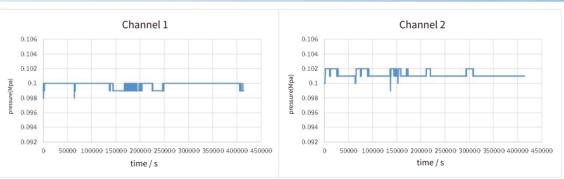
High-Precision Pressure Sensors



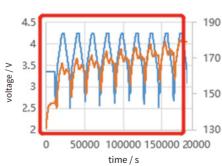
GVM | 24


In-situ Multi-channel **Storage Gassing Test System**




Features

In-situ Storage Gassing testing for pouch cells Multi-channel Testing (up to 64 channels) Automatical Data Recording(volume, voltage and internal resistance) Access to External Cyclers



Square & Cylinder Cell **Internal Pressure Testing System**

Test conditions: 60°C atmospheric pressure test

Conclusion: As the cycle count increases, the pressure value rises, and after reaching a certain level, it stabilizes for a period of time.

25 | MSG

Test results: 115 hours, 0.003MPa fluctuation

PBP | 26

In-Situ Cell Swelling Solutions

Scan QR code for details

⊘ Model Coin-cell Swelling Analyzer (MCS Series)

- ⊘ In-Situ Rapid Swelling Screening For Silicon-Based Anode(RSS Series)
- \odot In-situ Swelling Analyzer for Consumer Battery/Cells (CBS Series)
- ⊘ In-situ Swelling Analyzer for Power and Energy Storage Cells(SWE Series)
- ⊘ Battery Pressure Distribution Film(BPD Series)

A Complete Solution for Cell Expansion

Battery Pressure Distribution

Measurement System

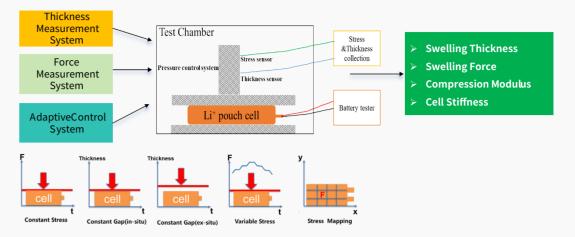
Model Coin Cell Silicon-Based Anode Consumer Battery

Stacked Cell

Pouch Cell

Model coin cell

Square Cell


Short-blade Cell (<700*400*100 mm)

Consumer Battery & Power Battery & Energy Storage Battery

CBS series & SWE series

Solid-state Batteries

B Instrument Principle

Test Range & Accuracy

- ⊘ Force: 1kg~10T(Accuracy: 0.3% F.S)
- ⊘ Number of channels: 1-4 channels

c Specifications

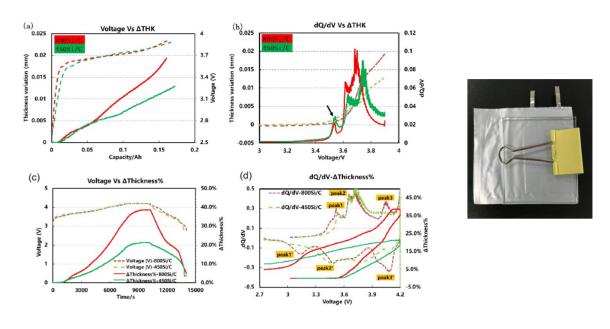
٢	Aodel Number	MCS1400	RSS1400	CBS1400
	Constant Gap	×	×	\checkmark
Test Mode	Constant Pressure	\checkmark	\checkmark	\checkmark
	Steady-State Compression	×	\checkmark	\checkmark
	Battery Cell Type	Coin Cell	Coin Cell / Small Pouch Cell	Coin Cell / Small Pouch Cell
Compatible Battery Cell	Maximum Cell Size	/	60*90mm	100*100mm
	Channel Quantity	1/2/3/4	1/2/3/4	1/2/3/4
	Pressure Adjustment Range	5kg	1-100kg	1-300kg
Pressure Control	Pressure Measurement Range	/	0-100kg	0-300kg
	Resolution	/	±1kg	±1kg
Pressure Measurement	Accuracy	/	±0.3%F.S	±0.3%F.S
Thickness Control	Accuracy	/	±1μm	±1μm
	Measurement Range	×	0~5mm	0~6mm
Battery Cell Thickness Measurement	Resolution	×	0.01µm	0.1µm
Measurement	Accuracy	×	±1μm	±1μm
	Measurement Range	±5mm	±5mm	±6mm
Expansion Thickness Measurement	Resolution	0.01µm	0.01µm	0.01µm
Measurement	System thickness measurement accuracy	±1μm	±1μm	±1μm
	Thickness sensor measurement accuracy	±0.1µm	±0.1µm	±0.1µm
Dime	nsion	600*315*380mm	1200*700*1700mm	1300*700*1700mm
We	ight	53kg	600kg	830kg

Note: IEST prioritizes continuous product updates, and our specifications are subject to change without prior notice.

⊘ Displacement: 0.1mm~100mm Accuracy: ±1µm
 ⊘ Temperature: -20°C~80°C

SWE | 28

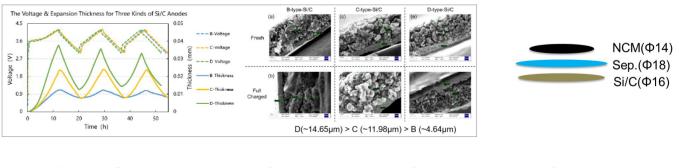
Equipment Specifications


	Model	SWE2100	SWE2110	SWE2500	SWE2510
	Constant Gap	\checkmark	\checkmark	\checkmark	\checkmark
Test Mode	Constant Pressure	\checkmark	\checkmark	\checkmark	\checkmark
	Steady-state Compression	\checkmark	\checkmark	\checkmark	\checkmark
	Cell Type	Pouch Cell Prismatic Cell	Pouch Cell Prismatic Cell	Pouch Cell Prismatic Cell	Pouch Cell Prismatic Cell
Applicable Cell	Maximum Cell Size	220*180mm	220*180mm	400*300mm	400*300mm
	Number of Channel	1	1	1	1
Pressure Control	Pressure Method	Servo Motor	Servo Motor	Servo Motor	Servo Motor
Pressure Control	Pressure Adjustment Range	20-1000kg	20-1000kg	50-5000kg	50-5000kg
Thickness Control	Accuracy	±1μm	±1μm	±2μm	±2μm
Cell Thickness Measurement	Measurement Range	0~80mm	0~80mm	0~100mm	0~100mm
	Measurement Range	±5mm	±5mm	±5mm	±5mm
Swelling Thickness Measurement	Resolution	0.1µm	0.1µm	0.1µm	0.1µm
	Accuracy	±1μm	±1μm	±1μm	±1μm
	Temperature Control	\checkmark	×	\checkmark	×
Temperature Control	Temperature Control Range	-20~80°C	×	-20~80°C	×
	Accuracy	±2°C	×	±2°C	×
	Dimension	700*1220*1850mm	410*455*980mm	1100*1600*2000mm	820*750*1650mm
	Weight	490kg	150kg	1100kg	850kg

Product Features D

- 1. Multi-Level Expansion Testing: Electrodes, Pouch Cell, Prismatic cell, Short-blade Cell
- 2. Multi-Channel Expansion Testing: Single-channel \rightarrow Dual-channel \rightarrow Four-channel
- 3. Temperature Control: -20°C-80°C
- 4. Wide Force Ranges: $5kg \rightarrow 100kg \rightarrow 300kg \rightarrow 1000kg \rightarrow 5000kg \rightarrow 10000kg$

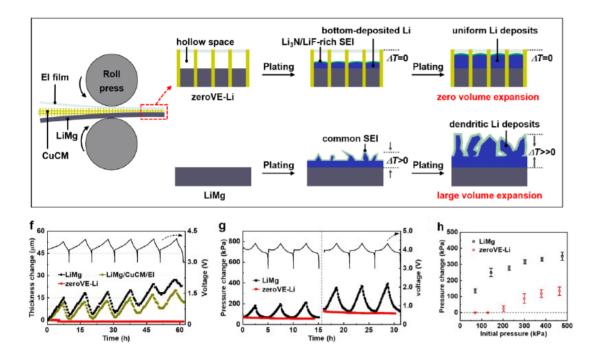
Application Case - Materials Evaluations E


(1) Formation & charge-discharge swelling of cells with different Si/C contents

Test Conditions: O Pouch Cell(stacking) ⊘ 200 mAh (1 cycle) ⊘ Cathode: NCM811 ⊘ Anode: 450Si/C (450 mAh/g) 800Si/C (800 mAh/g)

Conclusion: The higher the silicon content in the anode, the greater the swelling is(Max thickness change is around 40%), and the silicon-lithium alloy formed will affect graphite's phase transition potential of lithium intercalation.

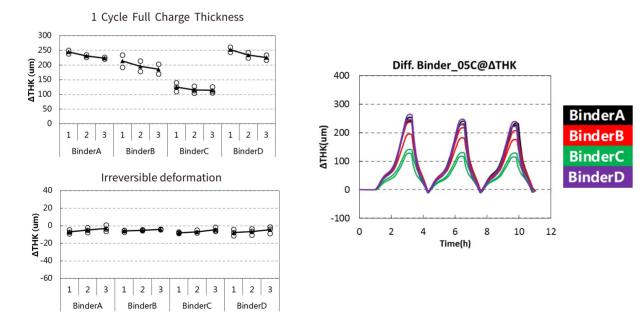
(2) Anode: NCM-Si/C cells with different modifications



Test Conditions: \bigcirc NCM/Si/C Coin Cells ⊘ Si/C#D(~14.65um)

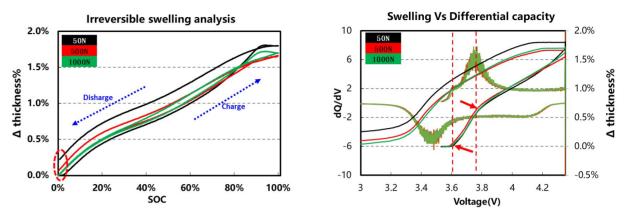
Conclusion: SiC#B shows the minimum swelling volume, and the swelling performance of the 3 anode materials share the same trend observed with the SEMs.

⊘ Si/C#C (~11.98um) ⊘ Si/C#B(~4.64um)



(3) Cycle swelling of cells with different Li metal

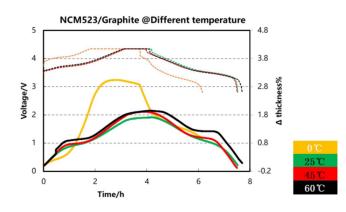
Conclusion: The modified lithium metal anode can significantly reduce the volume expansion of the cycle process.


(4) Cycle swelling of cells with different binders

Conclusion: The irreversible swelling of the 4 tested cells is similar, and the main difference lies in the **swelling thick-ness after one cycle of full charge**, that cells with **binder C** outperformed the others.

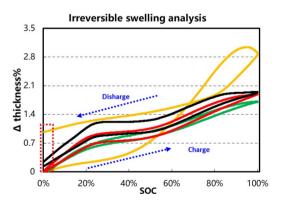
E Application Case - Process Conditions

(1) Swelling of prismatic cells under different pre-stress



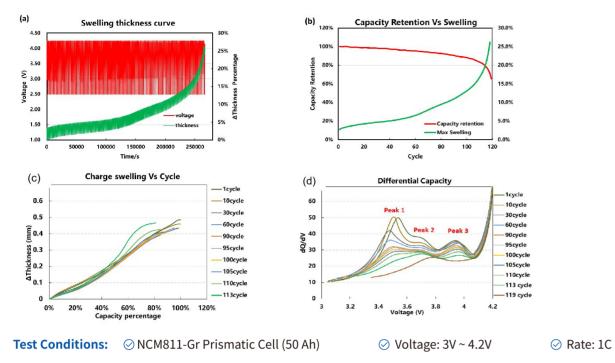
Test Conditions: ⊘NCM523/Gr Prismatic Cells(2400 mAh) ⊘34cm*46cm*106cm(T*W*L) ⊘Pre-stress: 50N/500N/1000N

Conclusion


The proportion of irreversible swelling of the cells can be reduced by increasing the pre-stress.
 During the charge process, the 2 inflection points of the swelling curve correspond to the 2 peaks of the differential capacity curve, indicating that the swelling of the cell is related to the phase transition of lithium intercalation & deintercalation.

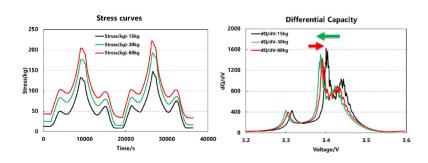
(2) Swelling of prismatic cells under different temperature

Test Conditions: ⊘ NCM523/Gr Prismatic Cells(2400 mAh) ⊘ Temperature: 0°C/25°C/45°C/60°C


Conclusion: The **irreversible swelling of the cells increases** in both cases when the temperature increases from 25°C to 60°C, as well as decreases from 25°C to 0°C. However, the causes of such swelling under high-temperature and low-temperature conditions may differ.

^{⊘34}cm*46cm*106cm(T*W*L)

Swelling of prismatic cells under different cycles (3)


Conclusion

1. The swelling curve of the cell corresponds to its capacity attenuation curve. Generally, when there is a sudden drop in capacity (the intersection point of the 2 curves), it is either due to gas generation or side reactions.

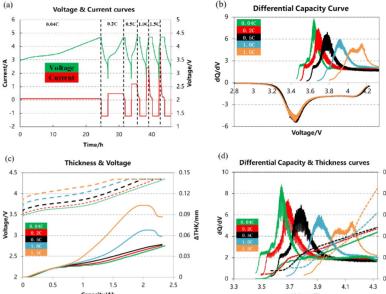
2. Lithium plating may occur after 115th cycle.

Swelling of prismatic cells under different pre-stress

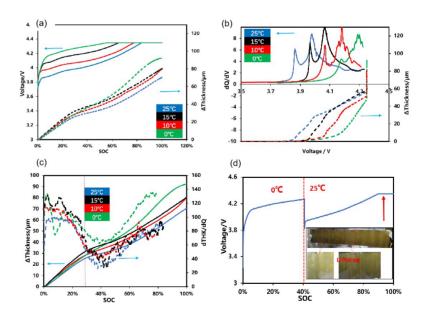
Pre- stress(kg)	Pre- stress(kPa)	Max Stress(kg)- 1st cycle	Max Stress(kPa)- 1st cycle
15	5	130	51
30	10	170	67
60	20	200	79

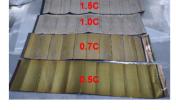
Test Conditions

- ⊘ LFP/Gr Prismatic Cells(100 Ah)
- ⊘ Pre-stress: 15kg/30kg/60kg


Conclusion

1. The initial gap of the cells gradually decreases with the increase of pre-stress, and the variation in swelling force becomes more significant during the charge and discharge process.


2. The charge polarization of the cells first decreases and then increases with the increase of pre-stress, indicating that a pre-stress of around 30kg is beneficial for improving the rate performance of prismatic cells.


Non-destructive lithium plating analysis

(1) Lithium plating under different rate

Lithium plating under different temperature (2)

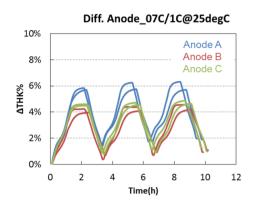
Test method: Charge the cells at different rates and discharge them at the same rate to analyze the differences in their voltage curves and swelling thickness curves.

Conclusion

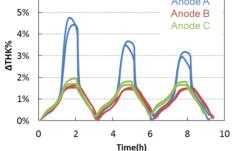
1. The slope of the cell's thickness curve increase with the increase of rate.(c) 2. Lithium plating gets more and more serious with increase of rate.

Test method: In situ detect the thickness curves of batteries with different temperatures.

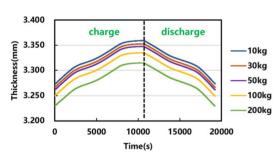
Conclusion: The position where the thickness curve at a certain temperature bifurcates compared with the thickness curve under high temperature which is without lithium plating is the temperature window of the lithium plating.



Application Case -Cell structure E

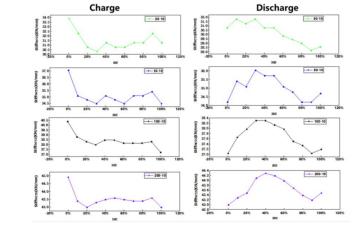

Multi-layer jelly rolls vs. Single-layer stacked cells (1)

Winding cell expansion


Diff. Anode_07C/1C@25degC 6% Anode A

Conclusion: The swelling ratio of jelly rolls is greater than that of stacked cells, cause the stress in stacked cells can partially release in all directions, resulting in a smaller overall swelling thickness.

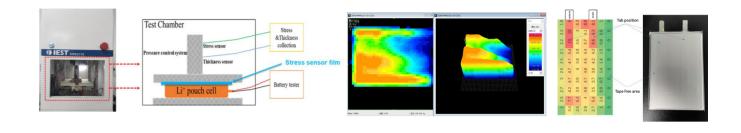
Swelling stiffness VS Compression stiffness under constant pressure (2)


Test Conditions: O Cell:LCO/GR 2400mAh O Constant pressure:10/30/50/100/200kg

stress stiffness SOC (KN/mm)	30-10	50-10	100-10	200-10
0%	40.8	42.6	51.7	62.1
30%	90.9	64.5	67.7	75.7
50%	71.4	45.5	59.2	67.6
80%	83.3	66.7	69.8	77.6
100%	71.4	61.5	65.2	69.6

Ev	nan	cion	stiffn	000
ᇇ	pan	21011	SUIIII	622

stress stiffness SOC (KN/mm)	30-10	50-10	100-10	200-10
0%	33.9	37.0	40.4	44.9
30%	30.3	34.5	38.0	43.3
50%	30.8	34.8	38.5	43.6
80%	31.3	35.1	38.1	43.4
100%	31.2	34.5	37.2	43.0


Conclusion

1. The expansion stiffness changes regularly with charging and discharging.

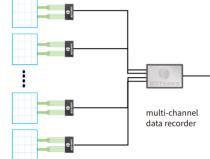
2. The difference between expansion stiffness and compression stiffness is obvious.

Battery Pressure Distribution Film

(1) Application

(2) Features

Real-time display of force-time curve Real-time synchronization of charge & discharge data One click test data export


Visualization of cell pressure distribution (Uniformity)

Model Table

lmage	Model	Range (MPa)	Points Supported	Precision	Thickness	Collection Equipment	Software
	BPD1100-M	0.2-2MPa, 0.3-3MPa 0.5-5Mpa, 1-10MPa	It's able to support up to 2288 points,but it needs to be converted according to the area. It can support up to 248/cm ²	3%~10%	≤0.35mm	1.Data transmission:USB2.0 2.Equipment interface: quick self-locking aviation plug interface	 Pressure lattice, 2D and 3D three-dimensional color scale images. Real-time pressure distribution data automatic analysis function, recording and storage. Able to record and stop, load recording files,
e u u	BPD1100-L	0.2-2MPa, 0.3-3MPa 0.5-5Mpa, 1-10MPa	It can support up to 9152 points. But it needs to be converted according to the area. It can support up to 248/cm ²	3%~10%	≤0.35mm	3.system power consumption: 2.5w (5V,0.5A) 4.Scanning frequency: MAX 100Hz 5.pressure resolution: 256 (8bit) 6.Equipment weight: less than 1KG	fast forward, rewind, and slow playback. Pressure distribution images, mountain contours, thermal images. 4. Real-time display of the pressure value of each sensing unit, pressure data area, and pressure and time curves,etc. 5. Pressure distribution data import and export,etc 6. Select a more suitable range according to the application scenario software.

Note: IEST prioritizes continuous product updates, and our specifications are subject to change without prior notice.

Multiple Measurement Ranges, Multiple Sensing Points, Multiple Software Features!

Software

Distribution film + data collector

BPD | 36

Cylindrical Cell Swelling Volume Analyzer

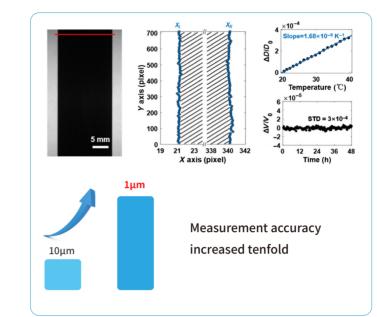
Scan QR code for details

A **Product Features**

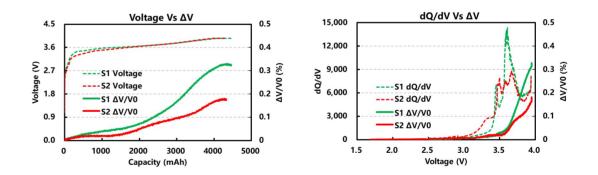
- Optical Imaging + 3D Reconstruction + Real-time Online Monitoring
- Non-contact, Non-destructive
- High-throughput testing, suitable for mass production

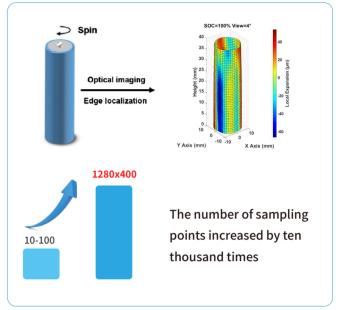
Real time reconstruction of battery surface morphology and calculation of volume deformation during charge and discharge processes. Combining voltage and current data to detect and predict battery health condition from a higher dimension.

B Model Table


Li-ion Cells

CCS1400					
Compatible Cell	Channel Number	Optical Detection Resolution	Weight	Size(W×D×H)	
Cylindrical Cell	4	0.1µm	900kg	2500x2600x1850 mm	


Note: IEST prioritizes continuous product updates, and our specifications are subject to change without prior notice.


High-precision Detection Technology

D Application Case

21700 Cell parameters: Sample 1-15%SiC ; Sample 2-10%SiC The volume swelling curve during formation shows that as the silicon content increases, the volume swelling during formation process increases, and the peak corresponding to lithium intercalation on the differential capacity curve becomes higher.

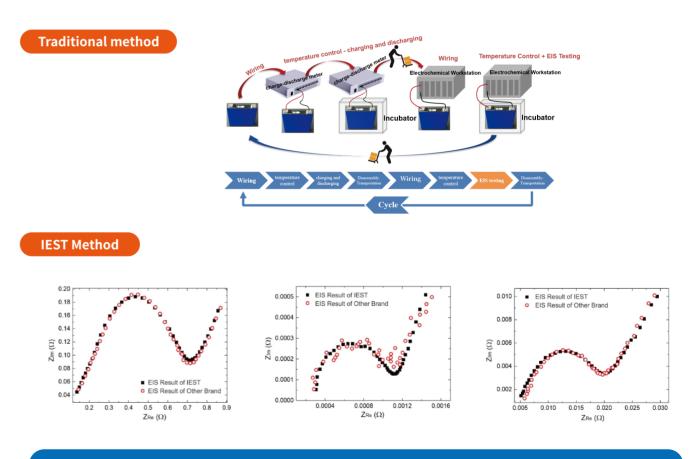
Rotational 3D Reconstruction Technology

Electrochemical Property Analyzer

Scan QR code for details

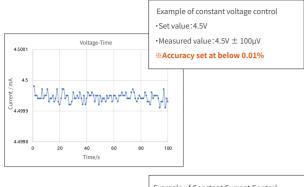
Model Table Α

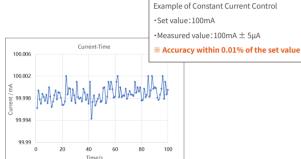
NO.	Product Name	Model	Current Range	Description
1	Electrochemical	ECT6008 - 5V 100mA	Four range auto switch 0.1mA , 1mA, 10mA, 100mA	Number of channel: 8 Voltage range: ±5V Maximum sampling rate: 10 SPS Response time: 5 ms
1	1 Performance Analyzer ECT Series	ECT6008 - 5V12A	Four range auto switch 12mA, 120 mA , 1.2A, 12A	Accuracy: 0.01% CV &LSV:none Temperature range: 10 ~ 80°C (optional) Functions: Voltage-current-time curve, Capacity-cycle curve, dV/dQ & dV/dQ curve, DCIR analysis, GITT,PITT, CA-CP
2	Electrochemical	ERT6008-5V100mA	Four range auto switch 0.1mA , 1mA, 10mA, 100mA	Number of channel: 8 Voltage range: ±5V Maximum sampling rate: 10 SPS Response time: 5 ms
Z	2 Performance Analyzer ERT-6 Series	ERT6008-5V12A	Four range auto switch 12mA, 120 mA , 1.2A, 12A	Accuracy: 0.01% CV &LSV:available Temperature range: 10 ~ 80°C Functions: Voltage-current-time curve, Capacity-cycle curve, dV/dQ & dV/dQ curve, DCIR analysis, GITT, PITT, CA-CP
2	Electrochemical	ERT7008-5V 100mA	Four range auto switch 0.1mA , 1mA, 10mA, 100mA	Number of channel: 8 Voltage: 5V Accuracy: 0.01% CV &LSV& EIS: available
3	3 Performance Analyzer ERT-7 Series			Temperature range: -20 ~ 80°C Functions: Voltage-current-time curve, Capacity-cycle curve, dV/dQ & dV/dQ curve, DCIR analysis, GITT, PITT, CA-CP EIS frequency range: 100k ~ 0.01Hz


Note: IEST prioritizes continuous product updates, and our specifications are subject to change without prior notice.

High-Precision Current & Voltage Testing В

The 0.01% testing accuracy can precisely measure the specific capacity of new materials and detect subtle side reactions during the initial stages of battery cycling. This allows for a comprehensive performance evaluation and lifetime prediction of the battery in a short period.

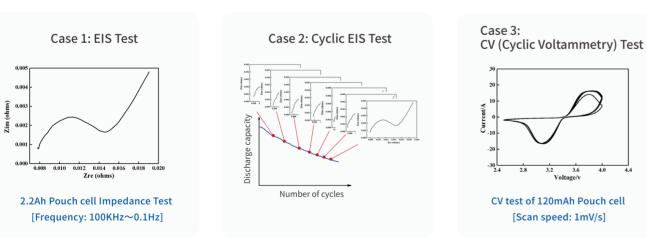

CV&EIS + Battery Cycler С



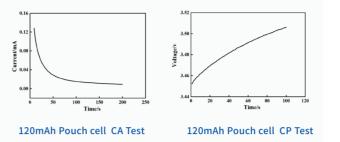
Minimize wiring, handling, and temperature adjustments, streamline operations

ECT&ERT | 40

IEST Innovative Solutions D

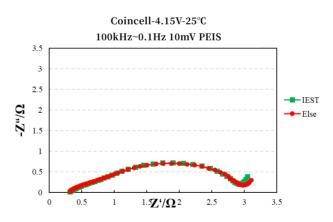


Product	Test Items	Function	
ECT/ERT All Series	Constant current, constant voltage, constant power, constant resistance, rate mode, etc.	ige, Conventional charging and discharging functions	
ECT/ERT All Series	Capacity-cycle curve, dQ/dV curve, dV/dQ curve, etc.	Study the relationship between the diffusion process of matter and charge transfer	
ECT/ERT All Series	PITT, GITT, DCIR	Study the relationship between the diffusion process of matter and charge transfer	
ECT/ERT All Series	CA、CP	Record the change of potential/current with time under constant current or constant voltage	
ERT All Series	CV,LSV	Apply linear voltage and record current-voltage curve	
ERT-6Series/ EIS ERT-7Series		Study the relationship between electrochemical impedance and frequency	

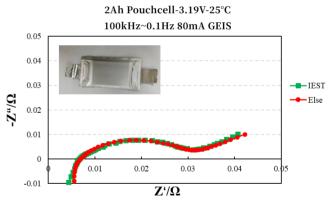

Equipped with a 24-bit ADC and 16-bit DAC, achieving high-precision voltage and current control and testing.

Offer common functions of an electrochemical workstation E

The ERT series includes common electrochemical workstation functions such as CV, LSV, EIS, CA, and CP.


Case4:CA·CP Test

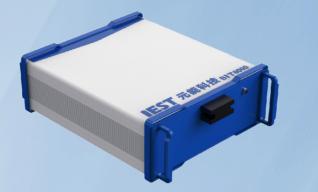
Eliminate switching time between instruments


Comparison of EIS results with other electrochemical workstations F

High-frequency EIS impedance: 0.01Hz~100kHz, meeting the high-frequency impedance test requirements of 1 $0m\Omega \sim k\Omega$ level batteries

Compared with the EIS test results of well-known foreign electrochemical workstations, the error is within 5%.

. Setting	EIS	
	CV	
	LSV	
	CA	
IEST SKAR	СР	
	GITT	



ECT&ERT | 42

Battery Impedance Tester

Scan QR code for details

- ⊘ EIS Test for Large-capacity Batteries (Single & Cycle test)
- ⊘ Battery Consistency Screening (Abnormal Battery Screening)
- **⊘** SOH Rapid Estimation (Cascade Utilization)
- ⊘ Battery Failure Analysis (Production Problem Troubleshooting)

Model Table

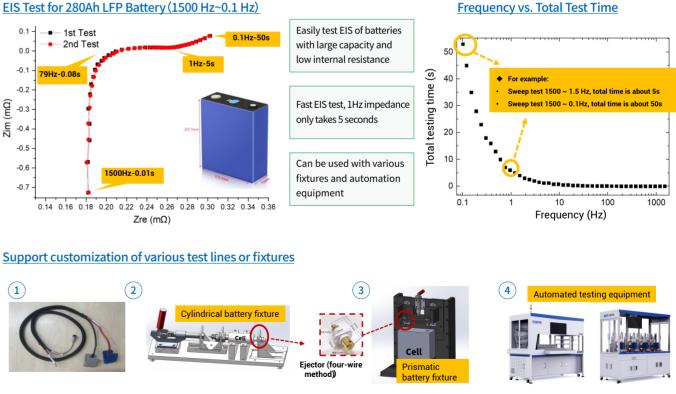
	Battery Impedance Tester	Adjustable Prismatic Battery Test Bracket	Adjustable Cylindrical Battery Test Bracket
Physical picture			
Model	BIT6000	APTB1000	ACTB1000
Voltage control accuracy	±0.006% F.S		Applicable to cylindrical
Current control accuracy	±0.05% F.S	Applicable to all kinds of prismatic batteries	batteries18650/21700, etc.
EIS frequency range	1500Hz ~ 0.1 Hz	Maximum length*width*height 284*94*255 mm	Maximum length 130 mm
EIS test range	0.05mΩ ~ 100mΩ	Maximum tab spacing 40 ~ 240 mm (Other sizes can be customized)	Diameter range 18 ~ 50 mm (Other sizes can be customized)
Applicable battery capacity	2~1000A lithium-ion battery		

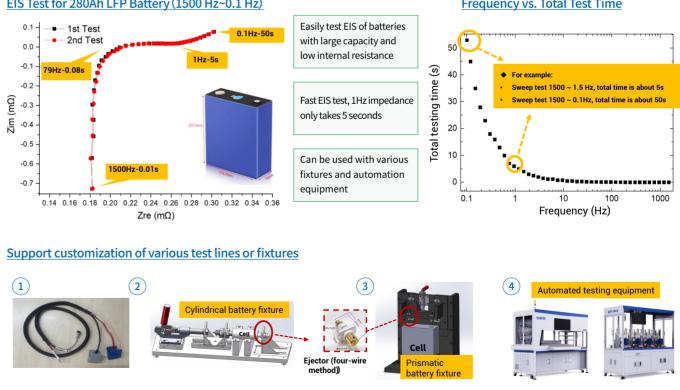
Note: IEST prioritizes continuous product updates, and our specifications are subject to change without prior notice.

Background В

Battery Manufacturers

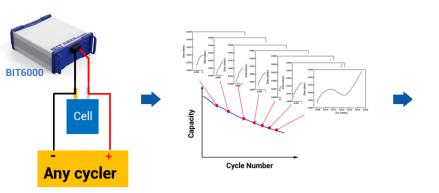
Q1: The larger the battery capacity, the smaller the internal resistance. Traditional electrochemical workstations cannot perform effective testing and they are expensive if used with current amplifiers; Q2: Different batteries can't be distinguished by OCV or 1000Hz ACIR alone. How can the batteries be sorted more finely? Q3: If there is an abnormality in the battery, how can we quickly locate the production problem? Is it a poor welding? Or a poor formation? Or is it a material failure?


Battery Use & Recycling Companies


Q4: How to judge the consistency of the battery before assembling the battery module? OCV or 1000Hz ACIR alone can no longer meet the requirements;

Q5: Are there differences between the same type of batteries purchased from different manufacturers? Can they be mixed? Q6: How much SOH is left for recycled or disassembled batteries? How to perform cascade utilization?

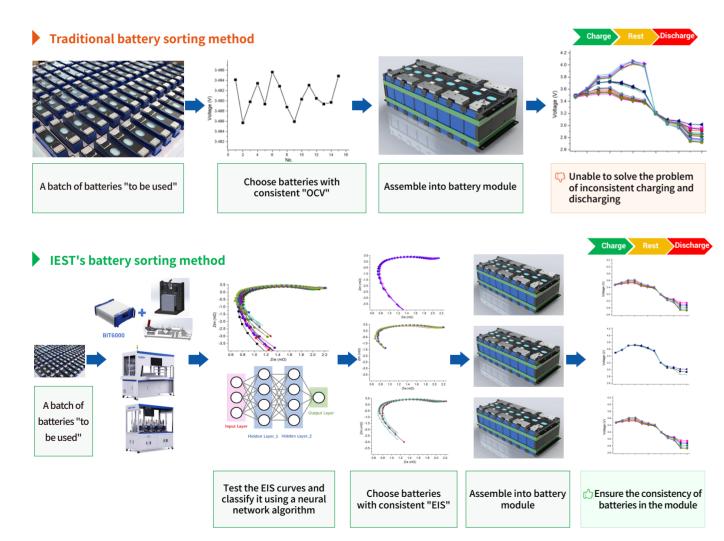
EIS test of battery with large capacity & low internal resistance С



The EIS test frequency range can be adjusted according to the production line progress and process section

BIT | 44

EIS test during battery cycling D

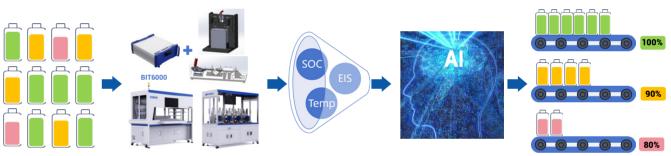


Battery Life Prediction[2]

Save the switching time between "temperature adjustment ⇔ charge and discharge instrument ⇔ electrochemical workstation"

[1] J. Phys. Chem. C, 127 4465-4495 (2023); [2] J. Power Sources, 576 233139 (2023);

Battery consistency screening (abnormal battery screening) E


Traditional battery grading and cascade utilization:

- 1. A batch of recycled batteries
- 2. Charge and discharge the batteries
- 3. Grouping and tiered utilization based on capacity

Three major disadvantages:

- Long grading time
- High power consumption
- Many channels occupied

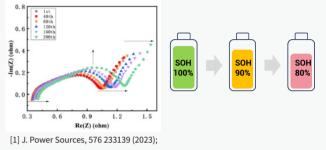
A batch of recycled batteries (different SOH)

VS

SOH estimation accuracy <5% (big data modeling required)

Applications:

Battery Pack After-Sales Outlets


45 | BIT

IEST's rapid grading solution:

- 1. A batch of recycled batteries
- 2. Perform EIS test on the batteries
- 3. According to the correlation model between EIS and

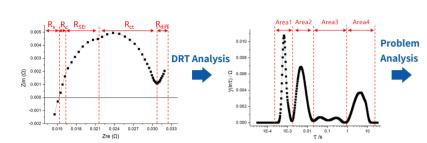
capacity, conduct rapid capacity division

Theoretical Background^[1]

As the battery health (SOH) decreases, its EIS test results will also change accordingly

SOH rapid prediction model based on EIS test

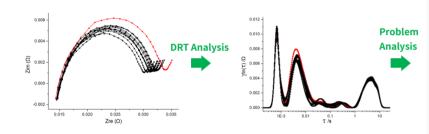
Used Car Recycling


Battery cell failure analysis (production problem troubleshooting) G

Distribution of Relaxation Times (DRT) analysis is a mathematical method for analyzing EIS spectra. Different from conventional equivalent circuit fitting, DRT analysis can avoid various problems such as

① the fitting model depends on the initial value;

②the fitting result is distorted;


③ different models can be fitted, but the mechanism explanation is not unified.

Contact impedance R₄ : The sum of all electronic resistances inside the battery, which is related to various problems Contact impedance R_c \Leftrightarrow Area1: problems such as poor soldering of the tab and poor contact SEI film impedance RsEI \Leftrightarrow Area2: problems such as poor formation folding and wrinkling of the electrode Charge transfer impedance R_a ⇔ Area3: problems such as poor

interface dynamics and lithium precipitation

Ion diffusion impedance Rdm 🖨 Area4: problems such as poor electrode compaction and poor electrolyte infiltration

E Key Achievement

- **700+** Customers served
- **2500+** Instruments supplied
- ◎ **5** National Testing Standards drafted
- ⊙ **100+** LIBs Testing Patents granted
- 230+ Application Articles published
- ◎ **20+** papers in leading journals published

Featured Clients

